

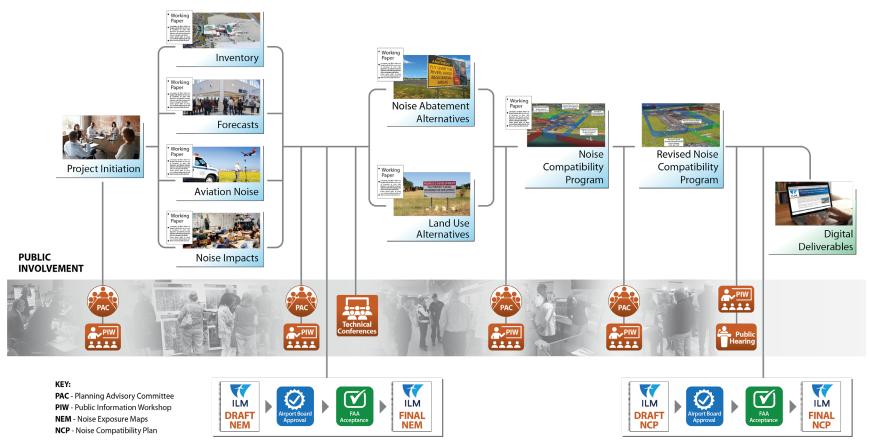
Wilmington International Airport

Agenda

- 1. Welcome and Introductions
 - Jeff Bourk, Wilmington International Airport
- 2. Study Process
 - Kory Lewis, Coffman Associates
- 3. Role of the PAC
 - Kory Lewis, Coffman Associates
- 4. Noise Exposure Maps Overview
 - Kory Lewis, Coffman Associates
- 5. Chapter 1: Inventory
 - Madeline Holliman, Coffman Associates
- 6. Chapter 2: Forecasts
 - Mike Dmyterko, Coffman Associates
- 7. Next Steps
 - Kory Lewis, Coffman Associates
- 8. PAC Members Discussion
 - Sarah Ferrara, Compass Rose Communications

Welcome and Introductions

What information can you provide to support the study?


What are your expectations for the Part 150 Study?

Agenda

- 1. Welcome and Introductions
 - Jeff Bourk, Wilmington International Airport
- 2. Study Process
 - Kory Lewis, Coffman Associates
- 3. Role of the PAC
 - Kory Lewis, Coffman Associates
- 4. Noise Exposure Maps Overview
 - Kory Lewis, Coffman Associates
- 5. Chapter 1: Inventory
 - Madeline Holliman, Coffman Associates
- 6. Chapter 2: Forecasts
 - Mike Dmyterko, Coffman Associates
- 7. Next Steps
 - Kory Lewis, Coffman Associates
- 8. PAC Members Discussion
 - Sarah Ferrara, Compass Rose Communications

ILM

Study Process

PAC Roles and Responsibilities

- Sounding Board
- Linkage to the Community
- Resource
- Critical Review

- Neighborhood groups
- Airport users
- FAA
- Aviation industry

What is a Part 150 Study?

A Part 150 Study:

- Identifies the current and projected annualized aircraft noise levels at ILM using the Day Night Average Sound Level (DNL) noise metric.
- Identifies measures to reduce the noise impacts within the noise exposure contours from aircraft operating to and from Airport through changes in aircraft operations or airport facilities.
- Encourages future land uses which are compatible with aircraft noise, such as commercial or industrial in undeveloped areas.
- Determines methods to reduce the adverse impacts of noise above FAA thresholds in existing residential areas.
- Establishes a procedure to implement, review, and update the program.

A Part 150 Study does not:

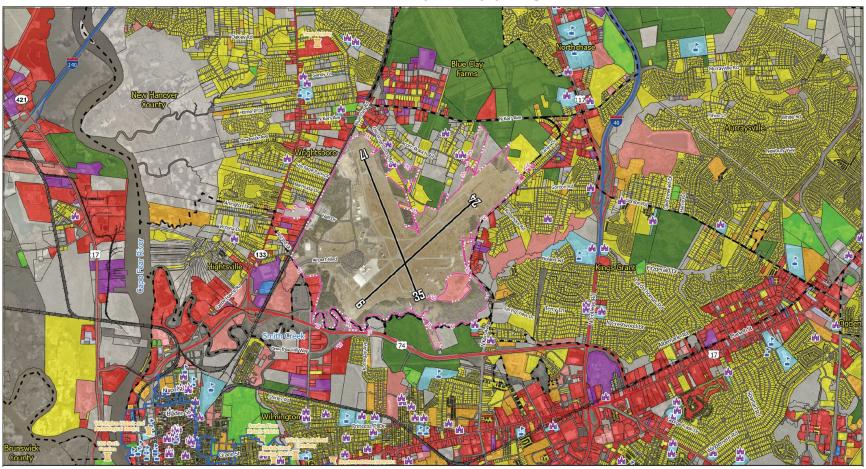
- Evaluate aircraft operations from other area airports.
- Consider other types of impacts (air quality, accidents, etc.).
- Use noise metrics other than DNL to determine noise impacts.
- Provide justification for airport expansion.

Agenda

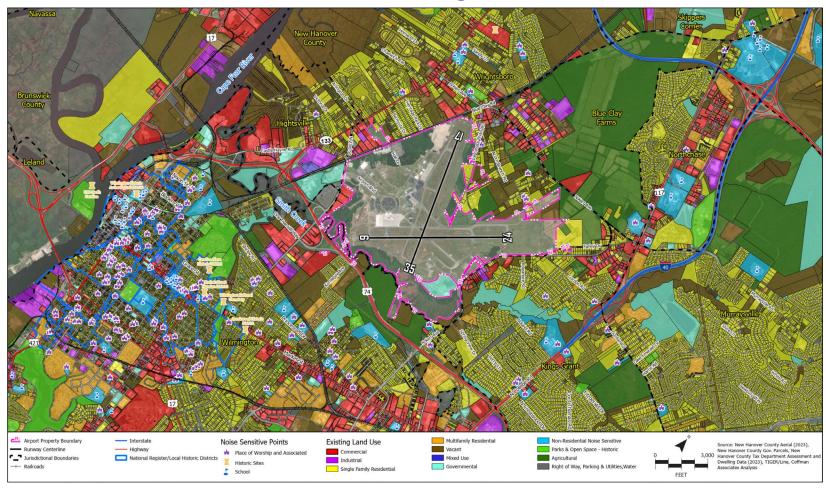
- 1. Welcome and Introductions
 - Jeff Bourk, Wilmington International Airport
- 2. Study Process
 - Kory Lewis, Coffman Associates
- 3. Role of the PAC
 - Kory Lewis, Coffman Associates
- 4. Noise Exposure Maps Overview
 - Kory Lewis, Coffman Associates
- 5. Chapter 1: Inventory
 - Madeline Holliman, Coffman Associates
- 6. Chapter 2: Forecasts
 - Mike Dmyterko, Coffman Associates
- 7. Next Steps
 - Kory Lewis, Coffman Associates
- 8. PAC Members Discussion
 - Sarah Ferrara, Compass Rose Communications

Chapter 1 — Inventory

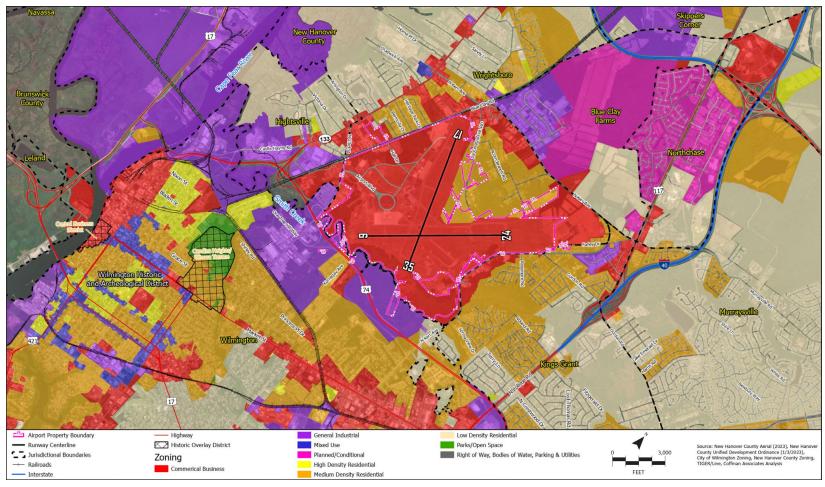
- Federal Government
- State and Local
- Local Land Use Policies and Regulations
- Airport Facility Inventory


ILM

Roles and Responsibilities


- Pilots
 - Responsible for safe operation of aircraft in the air and on the ground
- FAA
 - Establishes airspace where aircraft may be flown
 - Sets aircraft noise standards
 - Certifies aircraft and pilots
 - No off-airport land use authority
 - Establishes the Part 150 land use compatibility planning process
- Wilmington International Airport
 - No control over aircraft in flight
 - May establish run-up times, voluntary noise abatement procedures
 - Responsible for maintaining a safe airport
 - Must comply with FAA Grant Assurances
- New Hanover County and City of Wilmington
 - Promote compatible land use through zoning
 - Set noise ordinances, but aircraft are exempt per City of Burbank v. Lockheed Air Terminal (411 U.S. 624 (1973))

ILM


Inventory Mapping

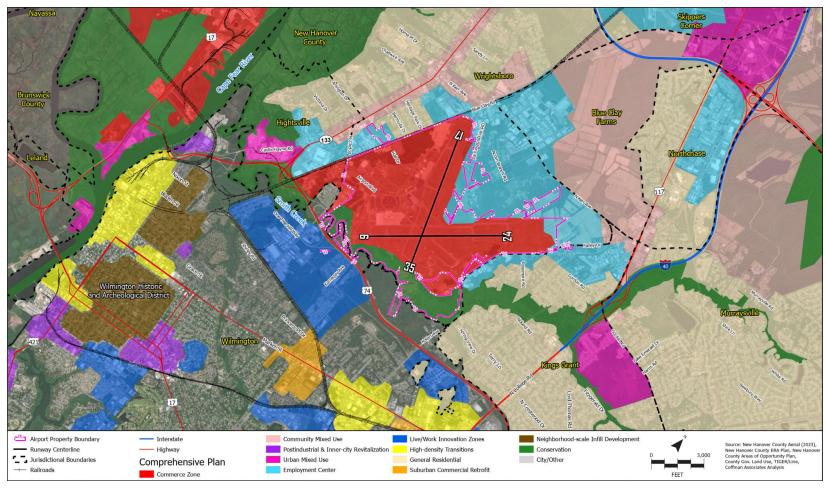

Exhibit 1C: Existing Land Use

Exhibit 1D: Zoning

Exhibit 1E: Comprehensive Plan

Agenda

- 1. Welcome and Introductions
 - Jeff Bourk, Wilmington International Airport
- 2. Study Process
 - Kory Lewis, Coffman Associates
- 3. Role of the PAC
 - Kory Lewis, Coffman Associates
- 4. Noise Exposure Maps Overview
 - Kory Lewis, Coffman Associates
- 5. Chapter 1: Inventory
 - Madeline Holliman, Coffman Associates
- 6. Chapter 2: Forecasts
 - Mike Dmyterko, Coffman Associates
- 7. Next Steps
 - Kory Lewis, Coffman Associates
- 8. PAC Members Discussion
 - Sarah Ferrara, Compass Rose Communications

—— Chapter 2 — Forecasts —

- National Aviation Trends
- Core Socioeconomic Forecast
- Commercial Service Forecast
- ▶ Enplanement Forecast

- Airline Operations Forecast
- Air Cargo Forecast
- Other Commercial Operations Forecast

ILM

Exhibit 2A: Enplaned Passenger History

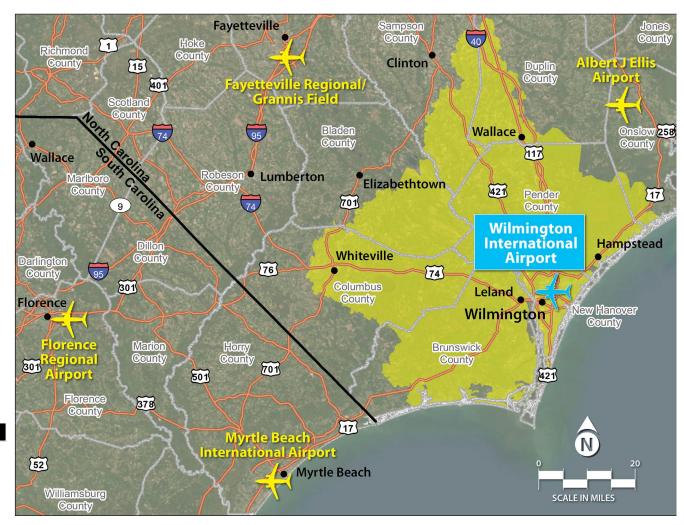
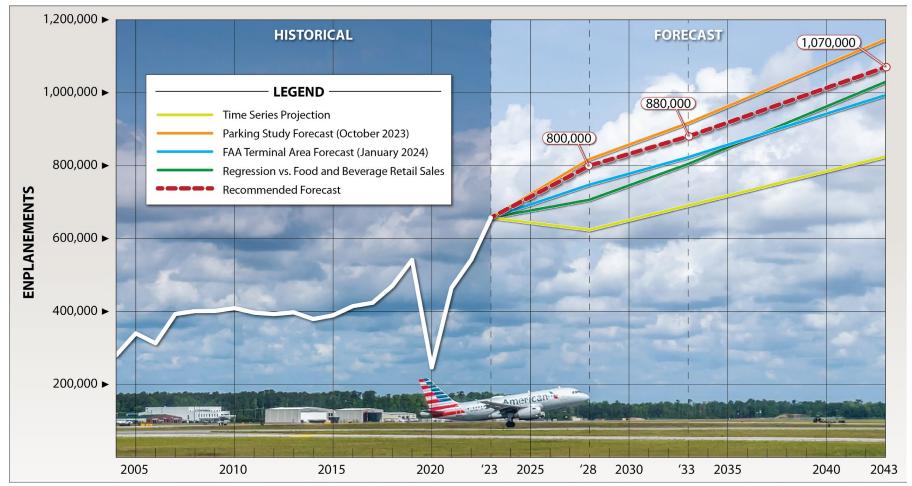


Exhibit 2B: Top 20 Markets and Nonstop Destinations

TOP 20 DESTINATIONS - 2023											
Rank	Market	Enplaned									
1	New York-Newark (EWR,JFK,LGA)	91,996									
2	Miami-South Florida (FLL,MIA,PBI)	28,472									
3	D.CBaltimore (BWI,DCA,IAD)	25,801									
4	Orlando (MCO,SFB)	25,365									
5	Philadelphia (ILG,PHL)	21,393									
6	Boston (BOS)	20,315									
7	Atlanta (ATL)	18,269									
8	Dallas-Ft. Worth (DAL,DFW)	17,381									
9	New Haven (HVN)	17,262									
10	Los Angeles (BUR,LAX,LGB,ONT,SNA)	15,705									
11	Chicago (MDW,ORD)	14,681									
12	Denver (DEN)	11,669									
13	Tampa-St. Petersburg (TPA)	10,258									
14	Minneapolis-St. Paul (MSP)	9,841									
15	Las Vegas (LAS)	9,637									
16	Phoenix (IWA,PHX)	9,032									
17	San Francisco (OAK,SFO,SJC)	8,623									
18	Nashville (BNA)	7,660									
19	Houston (HOU,IAH)	6,227									
20	Seattle (SEA)	6,059									

Exhibit 2C: Commercial Airline Service Area



LEGEND

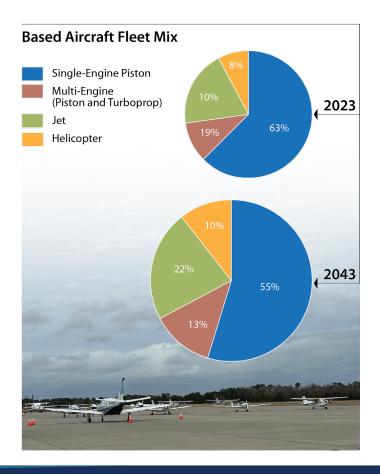

ILM

Exhibit 2D: Enplanement Forecasts

Exhibit 2J: Forecast Summary

	BASE	FORECAST				
	2023	2028	2033	2043		
ENPLANEMENTS						
	657,292	800,000	880,000	1,070,000		
OPERATIONS						
ltinerant						
Airline	17,800	19,600	20,400	21,800		
Air Cargo	960	900	900	900		
Other Air Taxi	6,669	7,700	8,500	10,400		
General Aviation	33,113	37,000	38,400	41,800		
Military	5,968	6,110	6,110	6,110		
Subtotal	64,510	71,310	74,310	81,010		
Local						
General Aviation	20,074	23,400	26,600	33,200		
Military	3,078	3,129	3,129	3,129		
Subtotal	23,152	26,529	29,729	36,329		
Total Operations	87,662	97,839	104,039	117,339		
PEAKING						
Peak Month	8,312	9,277	9,865	11,126		
Busy Day	373	417	443	501		
Design Day	273	305	324	366		
Design Hour	14	15	16	18		
Peak Hour	33	36	39	44		
BASED AIRCRAFT						
Single-Engine Piston	74	82	87	104		
Multi-Engine (Piston and Turboprop)	12	15	17	24		
Jet	23	26	31	42		
Helicopter	9	11	14	20		
Total Based Aircraft	118	133	149	189		

ILM

Exhibit 2M: Historical Jet and Turboprop Operations

AIRPORT REFERENCE CODE (ARC) SUMMARY

ARC	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
A-I	484	492	770	894	930	764	884	1,246	1,322	1,396
A-II	1,736	1,462	1,536	1,728	1,418	1,100	1,064	1,198	1,090	1,076
B-I	2,264	2,166	1,960	2,064	2,544	2,212	1,546	2,302	2,400	2,124
B-II	4,820	5,318	5,738	6,670	6,594	6,720	5,464	7,446	8,120	7,874
B-III	1,176	1,134	800	814	854	868	842	922	824	784
C-I	932	834	628	828	662	676	440	620	610	470
C-II	8,282	7,884	6,324	6,846	9,636	10,568	5,512	6,532	7,370	5,290
C-III	5,222	5,668	7,694	7,096	7,092	8,458	6,718	10,868	11,638	13,844
C-IV	282	318	310	364	302	268	392	426	274	274
C-V	78	142	154	290	350	620	622	546	558	490
D-I	264	336	316	348	336	278	196	1,192	468	484
D-II	490	482	418	288	294	262	202	334	420	286
D-III	566	648	680	838	896	716	304	332	520	1,278
D-IV	0	0	0	0	0	2	0	0	6	0
D-V	2	0	4	0	0	0	2	0	0	0
E-I	0	0	4	2	0	2	2	0	4	4
Total	26,598	26,884	27,336	29,070	31,908	33,514	24,190	33,964	35,624	35,674

Exhibit 2M: Historical Jet and Turboprop Operations

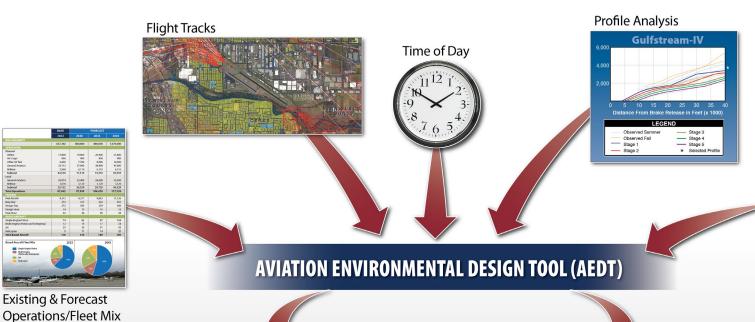
APPROACH CATEGORY

AAC	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Α	2,220	1,954	2,306	2,622	2,348	1,864	1,948	2,444	2,412	2,472
В	8,260	8,618	8,498	9,548	9,992	9,800	7,852	10,670	11,344	10,782
C	14,796	14,846	15,110	15,424	18,042	20,590	13,684	18,992	20,450	20,368
D	1,322	1,466	1,418	1,474	1,526	1,258	704	1,858	1,414	2,048
E	0	0	4	2	0	2	2	0	4	4
Total	26,598	26,884	27,336	29,070	31,908	33,514	24,190	33,964	35,624	35,674

DESIGN GROUP

ADG	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
I	3,944	3,828	3,678	4,136	4,472	3,932	3,068	5,360	4,804	4478
II	15,328	15,146	14,016	15,532	17,942	18,650	12,242	15,510	17,000	14,526
III	6,964	7,450	9,174	8,748	8,842	10,042	7,864	12,122	12,982	15,906
IV	282	318	310	364	302	270	392	426	280	274
V	80	142	158	290	350	620	624	546	558	490
Total	26,598	26,884	27,336	29,070	31,908	33,514	24,190	33,964	35,624	35,674

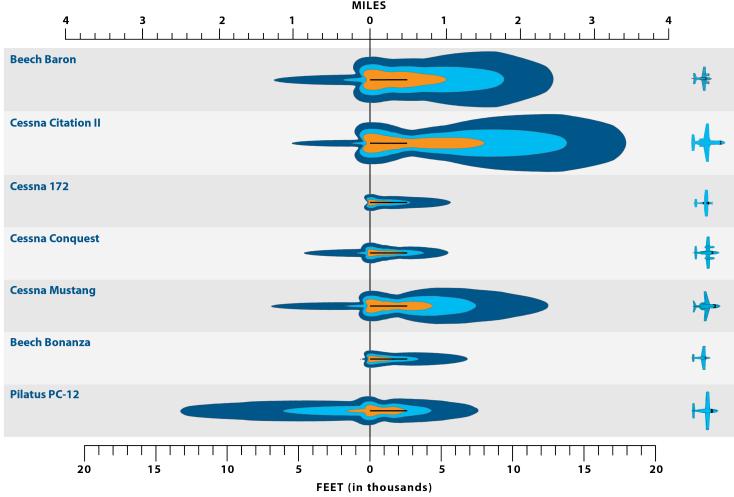
Agenda


- 1. Welcome and Introductions
 - Jeff Bourk, Wilmington International Airport
- 2. Study Process
 - Kory Lewis, Coffman Associates
- 3. Role of the PAC
 - Kory Lewis, Coffman Associates
- 4. Noise Exposure Maps Overview
 - Kory Lewis, Coffman Associates
- 5. Chapter 1: Inventory
 - Madeline Holliman, Coffman Associates
- 6. Chapter 2: Forecasts
 - Mike Dmyterko, Coffman Associates
- 7. Next Steps
 - Kory Lewis, Coffman Associates
- 8. PAC Members Discussion
 - Sarah Ferrara, Compass Rose Communications

Next Steps

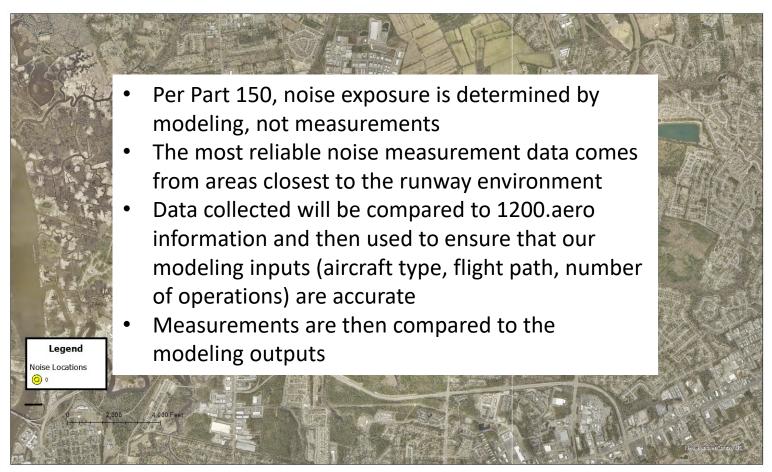
- Develop Noise Exposure Contours
- Analyze Noise Measurement Data
- Process radar flight track data
- Chapter 3 Aviation Noise and Chapter 4 Noise Impacts
- Next PAC Meeting in September 2024

AEDT Process



ILM

Grid Point Analysis Noise Contours


Terrain Data

The contours represent sound exposure levels (SEL) of 85, 90 and 95 dB for one arrival and one departure of each aircraft type. The outer contour represents 85 dB SEL. The inner contour represents 95 dB SEL.

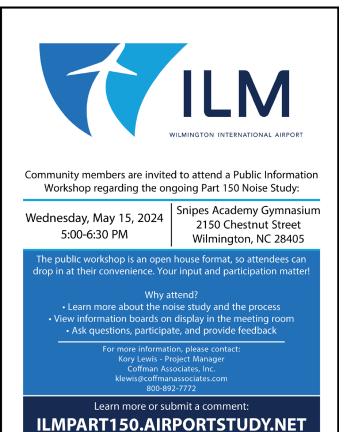
GENERAL AVIATION AIRCRAFT

Noise Measurement Locations

Agenda

- 1. Welcome and Introductions
 - Jeff Bourk, Wilmington International Airport
- 2. Study Process
 - Kory Lewis, Coffman Associates
- 3. Role of the PAC
 - Kory Lewis, Coffman Associates
- 4. Noise Exposure Maps Overview
 - Kory Lewis, Coffman Associates
- 5. Chapter 1: Inventory
 - Madeline Holliman, Coffman Associates
- 6. Chapter 2: Forecasts
 - Mike Dmyterko, Coffman Associates
- 7. Next Steps
 - Kory Lewis, Coffman Associates
- 8. PAC Members Discussion
 - Sarah Ferrara, Compass Rose Communications

What information can you provide to support the study?


What are your expectations for the Part 150 Study?

t ILM

Public Involvement

ilmpart150.airportstudy.net

Thank You!